On power similarity of complex symmetric operators
نویسندگان
چکیده
منابع مشابه
Complex Symmetric Operators and Applications
We study a few classes of Hilbert space operators whose matrix representations are complex symmetric with respect to a preferred orthonormal basis. The existence of this additional symmetry has notable implications and, in particular, it explains from a unifying point of view some classical results. We explore applications of this symmetry to Jordan canonical models, selfadjoint extensions of s...
متن کاملComplex Symmetric Operators and Applications Ii
A bounded linear operator T on a complex Hilbert space H is called complex symmetric if T = CT ∗C, where C is a conjugation (an isometric, antilinear involution of H). We prove that T = CJ |T |, where J is an auxiliary conjugation commuting with |T | = √ T ∗T . We consider numerous examples, including the Poincaré-Neumann singular integral (bounded) operator and the Jordan model operator (compr...
متن کاملapplication of upfc based on svpwm for power quality improvement
در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...
15 صفحه اولOn the Closure of the Complex Symmetric Operators: Compact Operators and Weighted Shifts
We study the closure CSO of the set CSO of all complex symmetric operators on a separable, infinite-dimensional, complex Hilbert space. Among other things, we prove that every compact operator in CSO is complex symmetric. Using a construction of Kakutani as motivation, we also describe many properties of weighted shifts in CSO\CSO. In particular, we show that weighted shifts which demonstrate a...
متن کاملOn the Complex Moments of Symmetric Power L-Functions
Investigations about the distribution of values of L-functions at s = 1 (in this paper, all Lfunctions are normalized so that the center of the critical strip is s = 1/2) began with the works of Chowla, and Chowla-Erdös in the case of L-functions associated to the family of real Dirichlet characters. Via Dirichlet’s class number formula, these have implications to the study of the distribution ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2019
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil1911577k